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~n surveying the literature in mathematics education there seems to be a significant lack of 
success in explaining the relationship between the use of concrete embodiments in teaching 
mathematics and learning mathematical concepts and procedures. Acolleague and I have 
developed a theory which has the potential to explain the circumstances under which the 
use of concrete materials produce efficient learning of mathematical concepts and skills 
(Ohlsson and Hall, 1990). The theory relies heavily on recent developments in 
mathematics education and cognitive science. 

PROCEDURAL ANALOGY THEORY 

The procedural analogy theory described briefly here is a theory of instruction in 
arithmetic. In addition to the original publication concerning this theory (Ohlsson and Hall, 
1990), aspects of the theory have been presented elsewhere (Hall, 1990 and 1991). This 
theory is applicable to the use of concrete teaching materials by teachers who aim to' 
i~crease learners' arithmetic skills and understandings beyond what would be the case 
without learners using such materials. That the use of these concrete materials may be seen 
as an attempt to better represent the abstractness of arithmetic facts and operations is hardly 
a new idea, but the empirical data supporting such notions is inconclusive. 

The raison d'etre for concrete materials is to assist learners in internalising the 
mathematical concepts and skills represented by these materials. In cognitive science 
terminology, the materials assist the learning of declarative and procedural knowledge. The 
procedural analogy theory describes how concrete materials allow this declarative and 
procedural knowledge to be developed to the required target behaviour. Simplification, 
procedural analogy and symbolism lead finally to automatic responses. 

The theory predicts that the pedagogical usefulness of an embodiment is a function of the 
degree of similarity of the procedure for the embodiment to the procedure for the initial 
symbolic representation, and argues that this relationship can be quantified. That is, this 
theory describes specific ways in which teachers may use concrete materials so as to 
increase the effectiveness of intended learning outcomes. . 

The four operations in algorithm format constitute a large portion of schoolchildren's 
mathematical experiences, certainly up to the beginning of secondary school. Yet we know 
that the completion of whole number algorithms from the learners' points of view is 
problematic. For example, subtracting one number from another is deceptively simple, 
provided you know how to do it. We will all be familiar with the range of incorrect 
approaches and the inventiveness of learners in creating incorrect solutions to algorithms. 
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If we consider the subtraction shown below on the left hand side of Figure 1, we expect 
learners to do something similar to what is written on the right hand side of the table. 

Figure 1: 

542-
263 
279 

3 from 2, cannot. Cross out 4, write 3. Write 1 beside 
2. 3 from 12 is 9. 

6 from 3, cannot. Cross out 5, write 4. Write 1 beside 
3.6 fTom 13 is 7. 

2 from 4 is 2. 

Simple subtraction 

Table 1 shows that there are three or perhaps five steps in solving this algorithm. And this 
is true for an expert in subtraction algorithms. Unfortunately it is not true of learners, and 
may barely be true of many primary school teachers. For the novice, this simple 
subtraction is more likely to involve the steps shown in Figure 2. 

Figure 2: 

542-
263 
279 

0.0 542 - 263 (recognise question) 

1.0 Process units 
1.1 Take away 3 from 2 (cannot) 

1.1.1 Trade for more units 
1.1.2 Recall 4 - 1 = 3 
1.1.3 Cross out 4, write 3 
1.1.4 Write 1 next to 2 
1.1.5 Recall this is 12 

1.2 Take 3 from 12 
1.3 Recall 12 - 3 = 9 
1.4 Record 9 in answer space 

2.0 Process tens 
! 2.1 Take away 6 from 3 (cannot) 

2.1.1 Trade for more tens 
2.1.2 Recall 5 - 1 = 4 
2.1.3 Cross out 5, write 4 
2.1.4 Write 1 next to 3 
2.1.5 Recall this is 13 

2.2 Take 6 fTom 13 
2.3 Recall 13 - 6 = 7 
2.4 Record 7 in answer spacle 

3.0 Process hundreds 
3.1 Take 2 from 4 
3.2 Recall 4 - 2 = 2 
3.3 Record 2 ,in answer space 

4.0 Read answer 

'simple' subtraction 
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Figure 2 shows that for the novice there may be 26 steps in solving this algorithm. 
Certainly over time chunking of steps would take place, as would the development of a 
more automatic response, so the actual number of steps is likely to decrease. On the other 
hand, those learners whose recall of number facts requires some calculation beyond quick 
reference to short term memory would increase the initial number of steps. There are two 
points that I want to make here. The first is that for novices, simple subtractions are 
anything but simple, they are complex multi-step operations with numerous opportunities 
for error. The second point relates to the value of the procedural analogy theory in drawing 
the teacher's attention to the need to cover every aspect of the algorithm to be taught. 

MAB procedure Target procedure 

0.0 542 - 263 0·0 542 - 263 
0.1 Subtract 263 from 5H; 4T, 2U 

1.0 Process units 1.0 Process units 
1.1 Take 3U from 2U (cannot) . 1.1 Take 3 from 2 (cannot) 

1.1.1 Trade for more units 1.1.1 Trade for more units 
1.1.2 Move lL from 4L to bank 1.1.2 Recall 4 - 1 = 3 

bring back IOU 1.1.3 Cross out 4, write 3 
1.1.3 Join IOU and 2U 1.1.4 Write 1 next to 2 
1.1.4 Recall IOU + 2U = 12U 1.1.5 Recall this is 12 

1.2 Take 3U from 12U 1.2 Take 3 from 12 
1.3 Recall12U - 3U = 9U 1.3 Recall 12 - 3 = 9 
1.4 Record answer, 9U in answer space 1.4 Record 9 in answer space 

2.0 Process tens 2.0 Process tens 
2.1 Take 6T from 3T (cannot) 2.1 Take 6 from 3 (cannot) 

2.1.1 Trade for more longs 2.1.1 Trade for more tens 
2.1.2 Move IH from 5H to bank 2.1.2 Recall 5 - 1 = 4 

bring back lOT 2.1.3 Cross out 5, write 4 
2.1.3 Join lOT and 3T 2.1.4 Write 1 next to 3 
2.1.4 Recall lOT + 3T = 13T 2.1.5 Recall this is 13· 

2.2 Take 6T from 13T 2.2 Take 6 from 13 
2.3 Recall 13T - 6T = 7T 2.3 Recall 13 - 6 = 7 
2.4 Record answer, 7T in answer space 2.4 Record 7 in answer space 

3.0 Process hundreds 3.0 Process hundreds 
3.1 Take 2H from 4 H 3.1 Take 2 from 4 
3.2 Recall4H - 2H = 2H 3.2 Recall 4 - 2 = 2 
3.3 Record answer, 2H in answer space 3.3 Record 2 in answer space 

4.0 Read answer (2H 7T 9U) ~ 4.0 Read answer (279) 

Figure 3: procedural analogy 
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The basis of the procedural analogy theory rests on the use of concrete materials to draw a 
parallel between the numbers represented by these materials and the arithmetic processes 
represented by operations on these materials. That is, while materials may be used in a 
wide range of ways, there are ways that are more effective than others because they more 
closely resemble the target behaviour that we want learners to use in the solving of 
algorithms. 

Figure 3 shows one use of Multibase Arithmetic Block (MAB) materials and the target 
algorithm that is developed from this material. The steps emphasised both in the use of 
MAB materials and in the target algorithm are not unique, and must be developed by the 
teacher. Once the teacher has decided on the target behaviour, an effective sequence can be 
developed for the concrete material. 

The procedural analogy theory argues that the closer the relationship between the concrete 
procedure and the target procedure, the higher the analogy between the two sets of steps, 
and so the more effective will be the learning outcomes. The procedural analogy theory 
uses an isomorphism index (Il ,2) as a measure of analogy between the two sets of steps. 
The index is given by the formula 

112 , = 
illl + N2 - 2) - (D} + D21 

Nl+N2-2 

where NI is the number of steps in the first procedure, N2 the number of steps in the 
second procedure, D} the number of steps in the first procedure but not in the second, and 
D2 the number in the second procedure but not in the first. In Table 3, N 1 = 25, N2 = 26, 
Dl = 5 and D2 = 6 giving a value for I of 0.78. This is a relatively high value which is 
quite difficult to increase in this algorithm. This simply reflects the reality that there are 
differences between using concrete materials and in writing algorithms. At the same time, 
slight variations in the steps will lead to a lower isomorphism index. The theory maintains 
that the higher the I value the more effective will be the value of the concrete materials, 
and the greater the learning outcomes. That is, the procedural analogy theory provides a 
method of measuring likely pedagogical success, and one allowing alterations in teaching 
steps to be assessed prior to teaching. 

Application of the theory requires the following steps: 

(a) select the arithmetic topic; 

(b) identify a procedure which an expert would use to answer questions in this topic; 

(c) develop a detailed procedure as target be ha viour for learners; . 

(d) identify suitable concrete materials to support learning this topic; 

(e) develop a detailed procedure for the use of these materials; 

(t) use the Isomorphism Index to contrast alternatives with concrete materials, and with 
the target behaviour; 

(g) use the Isomorphism Inde~ to. identify the best set of teaching procedures; 

(h) teach the topic. 

316 



RESEARCH DATA 

A small scale research project was designed to test this procedural analogy theory. This 
pilot study involved teaching subtraction to small groups (n=5) of primary school children, 
selected by virtue of one school's accessibility. Three groups of children were established: 
experimental group 1 used MAB materials, expanded notation and the target subtraction 
algorithm. Experimental group 2 used MAB materials and· the target algorithm, while the 
control group used the target algorithm only. The results provided some support for this 
theory, but none were statistically significant (Kelly, 1990). 

I am presently involved in a larger scale research project involving two schools, 120 
children, five teachers and three teaching approaches to subtraction'using MAB materials. 
Data gathering is still underway, so no meaningful statistical analyses can be reported here. 

DISCUSSION 

The present research seeks to verify the procedural analogy theory described here. There 
are clearly many aspects that could be discussed: the theory itself, the research approach, 
the data I have collected and ways in which they will be analysed. But I have a particular 
question that needs answering. . . 

Even though the larger part of this paper has been given over to describing the theory, the 
description is in the way of a precursor to this discussion. I have some ideological 
difficulties with this procedural theory: mathematics has to be more than procedures. In 
particular, assuming that the present theory has some veracity, I want to extend the present 
theory so as to investigate the extent to which 'understanding' takes place in the learner, 
and to gain some measure of the efficiency of learners' cognitive networks of mathematical 
skills and concepts~ That is, it is certainly educationally worthwhile to be able to help 
learners solve algorithms more efficiently, and that is no mean feat. But contemporary 
mathematics education is less about correct answers and more about understanding and 
constructing meanings. If this procedural theory is correct, and for argument's sake let me 
assume it is, then some iniportant questions arise. For example, which steps in the concrete 
materials sequence or in the target procedure lead to understanding? And how can we gaill' 
insights into and prove the existence of such understandings? Further, how does this 
increased understanding influence learners' networks of cognitive structures, and how can 
we prove it? 

This paper ends then with a list of research questions generated from the procedural 
analogy theory described here: questions about the procedural analogy theory, about 
pedagogy, about understanding and about cognitive structures. Such questions include 

How generalisable is the procedural analogy theory, in terms of mathematics topics 
and ages of learners? 

Does the procedural analogy theory lead to increases in understandings? 

Do teaching approaches developed through the procedural analogy theory, in 
contrast to other teaching approaches, increase the likelihood of transfer between 
topics, and increase learners' problem solving abilities? 
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Does application of this procedural analogy theory encourage learners to develop a 
richly connected network of cognitive structures? 

Is the cognitive development taking place through the application of this procedural 
analogy theory superior to the developments using other teaching approaches? 

What instruments will give researchers a clearer picture of changes in learners' 
understandings and cognitive structures? 
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